
Scaling Git with
Bitbucket Data Center
Considerations for large teams switching to Git

Contents
01

05

11

13

What is Git, why do I want it, and why is it hard to scale?

Scaling Git with Bitbucket Data Center

What about compliance?

Why choose Bitbucket Data Center?

Distributed development

Distributed development gives each developer
a working copy of the full repository history,
making development faster by speeding up
the commit process and reducing developers’
interdependence, as well as their dependence
on a network connection.

Feature branching

Feature branching gives developers an isolated
environment for every change they make to the
code base, insulating the main line of code from
any new features or bug fixes before they’re
reviewed and ready to be implemented.

Flexibility

Git offers flexibility in several respects including
development workflows and deployment
environments allowing your organization to
create its optimal development ecosystem.

So. Your software team is expanding and taking on more
high-value projects. That’s great news! The bad news,
however, is that your centralized version control system
isn’t really cutting it anymore. For growing IT organizations,
moving to a distributed version control system is now
considered an inevitable shift. This paper outlines some
of the benefits of Git as a distributed version control system
and how Bitbucket Data Center can help your company scale
its Git-powered operations smoothly.

As software development increases in complexity, and
development teams become more globalized, centralized
version control systems like Subversion stop meeting the needs
of their users. But distributed version control systems like Git
thrive in this environment. Rather than confining developers
to one centralized location for the full version history of the
software, distributed version control allows each developer’s
working copy of the code to act as a complete history of all
changes made to the software. Today, Git is far and away
the most widely used distributed version control system
by developers– and for good reason.

What is Git, why do
I want it, and why is
it hard to scale?

01

Codebase safety

Git is designed with maintaining the integrity
of managed source code as a top priority, using
secure algorithms to preserve your code, change
history, and traceability against both accidental
and malicious change.

Community

Git has become the expected version control
systems in many circles, and is very popular
among open source projects. This means its easy
to take advantage of third party libraries and
encourage others to use your open source code.

Pull requests

Pull requests create an intuitive way for project
leads to track changes and for developers to
discuss and review each other’s work before
new branches are integrated into the rest of
the codebase.

Faster release cycles

The ultimate result of distributed development,
feature branches, a strong community, and pull
requests is a more agile workflow and faster
release cycles!

Some of the key benefits
of adopting Git are:

01 02

IMPLEMENTING GIT

Implementing Git, just like implementing any organization-wide
change, comes with its own set of roadblocks that can be easily
mitigated through a Git management solution like Bitbucket:

Learning to use Git can be hard

While some of the terminology in Git can be cryptic for newcomers, Git is a very robust system
and teams that take the time to learn it can substantially increase their development speed.
The Git maintainers have also been steadily releasing new improvements like sensible command
defaults and contextual help messages that have made the on-boarding process much easier.

Git doesn’t come with administrative controls

There aren’t any native methods in Git to control your workflow, environment, or how your team
operates in your development ecosystem. Without a repository management tool to harness its
power and establish these protocols, Git can seem like a development free-for-all.

No native access management

While Git repositories and the integrity of their histories are cryptographically secure, there
is no out of the box solution with Git for setting up permission schemes for your projects and
repositories. In order to grant specific users read-only, read/write, and sys admin privileges at
various levels, a Git repository management solution like Bitbucket is necessary.

No compliance checks by default

Git alone does not offer any intuitive ways to monitor commits, audit changes, or track
development efforts from project management software. Neither can Git enforce specific
paradigms of development (e.g. only the author of a commit can push said commit). These
functions are most efficiently executed by outside applications.

Despite these hurdles, Git has been crowned the industry standard
and the most popular choice for version control among developers.
Git is favored by significant portions of both experienced
developers and college students, which means some of your
team has probably used it already. Git’s distributed development
environment also grants users freedom and makes it great for
remote teams with increased process speed and less dependence
on network access. Git’s workflow options, feature branches, and
pull request system encourage collaboration among your team
in the way that best suits them.

Each of these issues is important to address when establishing a version control system at your organization.
It’s much easier to plan for these needs ahead of time than address them after they become a problem.
So how do you overcome these challenges and still reap the benefits of adopting Git for your team?

SOLUTION

Select a tool that supports Git at scale, supports compliance and security needs, integrates with the rest
of your development ecosystem, and, most importantly, keeps your developers happy.

Choosing to adopt Git is the
first step...but what about all
the other considerations?

Integrations

How will your Git tooling integrate with the
rest of the tools in your software development
ecosystem like your issue tracker, continuous
integration solution, and communication tool?

Customization

Will your software team need to make
customizations to how they interact with Git
to address specific needs or requirements?

If you’re a large enterprise, or in a heavily-
regulated industry, Git adoption can become
even trickier and come with more points
of consideration:

Scale
How do you ensure that your version control
system and development ecosystem can scale
to support your users as they grow in number
and tax your hardware more?

Service-level agreements

Are you confident that your systems will stay
functioning and available to users and customers
at the necessary rates?

Disaster recovery

Do you have a recovery plan in place to quickly
get up and running if your entire system is down?

Compliance requirements

Are there mechanisms in place to establish
a required workflow for your development
ecosystem and meet the necessary traceability
and accountability requirements?

Git can quickly become a very computation-intensive system when used by teams of hundreds of developers
(especially distributed development teams) so it’s important that your Git management solution can keep the
lights on and the wheels spinning quickly.

03 04

Happy developers are the lifeblood of any software organization
and keeping them happy means removing obstacles that get
between them and coding before they realize they even exist.

Scaling Git with
Bitbucket Data Center

02

Source code management (SCM) cache
While redundancy is a great way for software teams to ensure their code is producing the
desired results, you don’t want Git performing operations over and over when it doesn’t have to.
Bitbucket Data Center’s SCM cache is designed to relieve the burden of repetitive Git processes.
Build agents can automatically trigger torrents of repetitive Git clone and fetch commands, so
overtaxing your system’s hardware happens all too easily. The SCM cache prompts Bitbucket
to analyze each Git hosting request, and, if it’s a cacheable clone request, Bitbucket will save
a copy on local fast storage. The next time an identical clone request is received for the same
repository, Bitbucket will stream the files from fast local storage instead of starting another Git
process, using far less processing power and memory.

Adaptive throttling
If your organization is already using Git, you’ve probably seen this scene before: frustrated
developers twiddling their thumbs, waiting forever for clones or builds that are taking much
longer than they should. Even after implementing processes designed to reduce Git’s CPU and
memory footprint, every system hits its capacity at some point. For Git management systems
under high stress, you can start seeing performance issues as Git process vie for scarce CPU
and memory. Bitbucket’s throttle service addresses this problem with a simple solution: by limiting
the number of Git hosting operations that are allowed to run concurrently. If many users (or, more
likely, build agents) are attempting to perform Git hosting operations all at once, only some

are processed immediately while the rest wait in a queue until the the number of Git hosting
operations falls back below the threshold you’ve set. Bitbucket also recognizes that not all Git
operations are alike and can vary considerably in how much power they use. This is where
adaptive throttling comes into play. Adaptive throttling lets Bitbucket constantly monitor the
system load and adjust the number of allowable Git hosting operations accordingly. This keeps
the request throttling system from needlessly queuing large numbers of simple operations
and from executing too many large operations at once. Bitbucket’s adaptive throttling system
optimizes your system’s capabilities, minimizes thumb twiddling, and maximizes
development time.

Git LFS (large file storage)
Git LFS is a Git extension that makes it easier for developers to work with large files in their
Git repositories. One of the cool things about Git LFS is that it makes Git a viable option for
certain developers who work with large binary files like designers and game development teams.
Historically, they’ve needed to use version control systems like Perforce to handle their large
files or just haven’t used a version control system. But with Git LFS, those days are over.

Git alone can really struggle to handle large files. Since every version of a file has to be copied
in the cloning process, large files can substantially increase clone and push times. Git LFS solves
this problem by replacing large files with tiny pointer files that reference their location on a large
file storage cache. Copies of large files’ histories are stored locally and remotely with the main
repository. This system of pointers significantly decreases operation times by only pushing or
cloning new versions of large files, and simply storing pointers for the rest. These pointers also
work in the background, so as far as developers can see, they have direct access to their large
files. With Git LFS support, your team can take on a much wider spectrum of projects that may
not have been possible otherwise!

Bitbucket Server fits the needs of many development teams,
but as growing software organizations take on more projects,
hire remote developers, and encounter new compliance
requirements, additional power may be required. That’s why
we specifically built Bitbucket Data Center to scale amicably
with the growth and evolving needs of your development team.
Data Center sports numerous features and background processes
that ensure performance and reliability. Some of these include:

05 06

PERFORMANCE AT SCALE

Your software team is growing, so isn’t it natural that your development ecosystem should be
able to grow with it? Systems that aren’t designed to scale see massive performance decreases
when the number of users and amount of data they process increases beyond their capabilities.
Bitbucket Data Center solves this issue by not only providing performance at scale, but instant
scaleability as well. Data Center’s turnkey active/active clustering allows you to seamlessly add
nodes to your cluster without any system downtime or additional licensing fees. Simply add
a new node to your cluster and the system will incorporate it into the structure.

Rather than one server
running a Git management
solution, a typical Bitbucket
Data Center cluster comprises
a number of machines, each
with their own purpose:

Application nodes

Each of these nodes runs a copy of
Bitbucket and processes the requests
that your users make. The more nodes
you install, the more users and requests
your system can handle.

Load balancer

The load balancer autonomously
distributes requests from your users
to your nodes. If a cluster node goes
down, the load balancer automatically
reroutes requests to the other nodes within

seconds, minimizing performance loss
and providing true high availability.

Shared database and NFS
file system
Bitbucket Data Center supports the same
databases as Bitbucket Server (except for
MySQL). A dedicated high performance
NFS filesystem stores repository,
attachment, and avatar data, allowing for
quick access from any of your cluster nodes.

Elasticsearch node

Elasticsearch provides a fast, full-text search
engine that powers searches at the project,
repository, and source code levels within
Bitbucket.

These components work in unison to
maximize the performance of your system
and allow you to scale Bitbucket seamlessly
with the growth of your development team.

Your network

Shared database Shared file system
(NFS)

Elasticsearch node

Load balancer

Bitbucket cluster nodes

Node 1 Node 2 Node 3 Node + n

07 08

Center offers official support for Amazon
Web Services.

You can quickly deploy Data Center clusters
to AWS, including multiple application nodes,
a shared database, and a load balancer.
To make the process as seamless as possible,
we collaborated with Amazon to develop
CloudFormation templates and Quickstart
Guides for all of Atlassian’s available Data Center
products. With capabilities like auto-scaling
and instant provisioning of nodes, scaling Data
Center to meet growing demand is simple.
When using infrastructure-as-a-service (IaaS)
products like AWS, make sure your nodes are
as collocated as possible to ensure optimal
functionality. This means locating nodes in
the same geographical location.

Integrations

Having a high-performance and scalable system
is only half the battle. Creating a reusable,
secure, and speedy development workflow
makes your Git management tool even more
powerful. There are several ways Bitbucket
Data Center can help in this area, but deep

integrations with the rest of your development
ecosystem just may be the most important.
Your teams can save time, boost visibility
and transparency, and reduce project overhead
with out of the box integrations with Jira
Software, Bamboo, and Hipchat. Bi-directional
communication allows developers to view
and transition Jira issues, get the status of
their continuous integration builds, and update
Hipchat rooms without leaving Bitbucket.
Likewise, development information is piped
back into these tools for easy access to
information by interested parties.

If your company is one of the many organizations
adopting DevOps, these integrations will play
an important role. There are likely several other
tools in your ecosystem that must be integrated
with your version control, or perhaps you have
specific workflow requirements that are not
available out of the box. To solve this, Bitbucket
Data Center offers plugin capabilities, in which
there are hundreds of add-ons already available
at the Atlassian Marketplace. Additional
extensibility is also available through the
Bitbucket REST APIs.

Smart mirroring for global teams

It’s pretty exciting when you can bring some
of the best developers in the world to your team.
The only problem is that they might be on the
other side of the world. With development teams
becoming increasingly globalized (Atlassian
has developers on three continents, for
example), companies have less control over the
performance of the networks that connect their
devs. Additionally, many software development
teams who use Git end up with large repositories
as a result of storing extensive historical
information, utilizing monolithic repositories,
or storing large binaries (often all three at
once). These compounding issues lead to lost
development time when developers have to wait
hours to clone a large repository stored on a
server across the world. This is where Bitbucket
Data Center’s smart mirroring comes into play.

Smart mirroring restores lost development
time by allowing you to set up live mirror nodes
with automatically synced, read-only copies
of repositories locally for your distributed
developers. Local and remote developers
simply push their commits to the primary
system and the mirrors automatically sync to
incorporate these commits. Additionally, these
mirrors automatically delegate authentication
and authorization of users’ credentials back

to the primary instance, so no additional user
management is necessary for the mirrors.
Smart mirroring cuts down wait times for
remote developers while keeping your
permission schemes in place, allowing you
to expand your development teams abroad
with little overhead.

Deployment flexibility

Bitbucket Data Center leaves it up to you
to choose the infrastructure to host your
deployment on. Whether it’s on bare metal
servers, virtual machines, or a hosted
environment, Data Center runs in whatever
environment that best suits your team’s needs.
In a recent survey of Atlassian Data Center
customers, 85% of installations were at least
partially virtualized. As infrastructure as a
service becomes more popular, it becomes
increasingly important that these offsite systems
maintain compatibility with the systems IT teams
want to put in place. To this end, Bitbucket Data

Here at Atlassian, we’ve seen
25x faster clone times for 5GB
repositories between San Francisco
and Sydney using smart mirroring.
25x faster. Seriously.

09 10

Performance monitoring and ease of testability

Bitbucket Server and Data Center both support JMX monitoring for a wide array of statistics
including thread pools, thread pool attributes, repositories, tickets, events, and more. Our build
engineers, however, wanted to take performance monitoring to the next level. We wanted to
construct a method to test the expansion capabilities better than the “try and see” approach
we were using, and solve performance issues before they became issues. Thus, the Elastic
Experiment Executor (E3) performance tool was born.

E3 lets you run controlled performance experiments on theoretical infrastructure configurations.
E3 spins up a configuration of Bitbucket, throws a repeatable workload of any desired size and
shape at it, and observes its throughput, response times, and other vital statistics while it runs.
We’ve used it ourselves to analyze whether our Bitbucket configuration could handle additional
build agents on Bamboo before implementing them. This kind of information is vital to monitoring
your system’s performance and, more importantly, knowing when its time to upgrade your system
before it becomes a problem.

Developing and operating software when constrained
by compliance requirements (be they rooted in a regulated
industry, a service-level agreement, or elsewhere) comes
with its own specific needs. Bitbucket Data Center addresses
these needs with a number of features designed to help your
team operate within these constraints:

High availability ensures that your system will stay functional and available to users
and customers should one of your cluster nodes go down.

Disaster recovery lets your team to set up an offsite cold standby array of machines
ready to be immediately implemented if your entire system goes down.

Support for various branching models enables your team to choose their optimal
workflow, and Git hooks compatibility can enforce that workflow so everyone is
accountable and on the same page.

Merge checks protect your codebase by allowing your sys admins to place strict
requirements (like a set number of peer approvals) before new code is merged into
the main branch.

Bitbucket’s integrations with Bamboo and other third party continuous integration solutions
let your team view build statuses in Bitbucket, respond faster to build failures,
and reduce the need to switch applications.

Sys admins can bestow accessibility permissions at global, project, and repository levels,
ensuring that data is only available to those who should have access.

Complete logs of every single event that occurs on your servers allow you to audit each
commit, pull request, user creation, and more should the need arise.

SAML 2.0 support enables single sign-on, easing the user management burden on your
sys admins and giving your users quicker and easier access to Bitbucket.

What about compliance?
03

11 12

Why choose
Bitbucket Data Center?

04

It meets all the requirements
Bitbucket Data Center was designed to unleash software teams’ potential and to meet
the increasingly rigorous needs of growing teams. Whether your team is increasing in size,
distribution, or both, Bitbucket Data Center will ensure that your development team is
operating as efficiently as possible. In addition to all these features, we’re working to make
Bitbucket Data Center meet even more of your teams’ needs, releasing updates multiple
times a year.

Elastic experiment executor

For a better idea of just how well Bitbucket Data Center scales with the growth of your
team, take a look at results we found after using the “Elastic Experiment Executor” to test
the loads that our Data Center configuration would be able to handle at various numbers
of nodes. This graph shows Data Center’s sustained tests per second (TPS) at various
cluster sizes and load levels. Tests in this context refer to any operations (such as a Git clone
or loading a page) that are successfully executed. The operations are taken from a typical
mix of interactions executed by Bitbucket.

As you can see, each node added substantially increases the number of operations
Bitbucket Data Center can handle in a timely manner. This is sort of scalability and the
ability to predict when it’s needed are imperative for growing software teams. Similar
results can also be reproduced for your own systems by using E3 on your own instance.

Simplified pricing model

Bitbucket Data Center offers a simplified pricing model that scales only with the number
of users accessing the application. License pricing does not increase with the number of
nodes you wish to install in your cluster or with different deployment environments. This
way, you can create a system for your whole development team without worrying about
incurring more costs.

Data Center is an annual term license and requires renewal each year. The renewal cost
is identical to that of a new license purchase for the user tier you require. Additionally,
the cost per user at each tier is identical to that of Bitbucket Server and the lowest
among comparable Git enterprise solutions. The table below shows exact pricing. Please
note, however, when renewing a license with an upgraded tier, you are not adding that
number of users to your license, but simply upgrading to that tier. This pricing model
is designed to make scaling Bitbucket Data Center with the growth of your development
team as straightforward as possible.

13 14

Bitbucket Data Center Pricing

500
450

400

350
300
250
200

150

100

50

0
40 80 120 160 200 240 280 320 360 400

TP
S

Throughput in scaling-incremental

8-node

7-node

6-node

5-node

4-node

3-node

2-node

1-node

500
450

400

350
300
250
200

150

100

50

0
40 80 120 160 200 240 280 320 360 400

TP
S

Throughput in scaling-incremental

8-node

7-node

6-node

5-node

4-node

3-node

2-node

1-node

1,000+ | 5,500+ | 20+
pull requests
a day

developers
collaborating on
projects from

locations

Teams at Amadeus
are succeeding with
Bitbucket Data Center
Amadeus is a leader in technology solutions for the global
travel and tourism. Through its flagship product, Altéa
Customer Management System, Amadeus connects airlines,
hotels, railways, cruise lines, and other travel providers
to over 100,000 travel agents worldwide.

Amadeus leverages the entire Atlassian productivity stack
including Jira Software, Hipchat, Confluence, and Bitbucket
for collaboration between their 15,000 employees. When
they saw rapid growth in their development operations,
Amadeus started to notice some performance issues with
their Git operations. That’s when they made the decision
to upgrade from Bitbucket Server to Bitbucket Data Center.
With Bitbucket Data Center, they were able to add cluster
nodes, improve system performance, and provide better
latency for their developers working in distributed teams
across multiple locations.

With Bitbucket Data Center, Amadeus is able to handle:

Features such as clustering for
load-balancing and reliability, fine-grain
permissions, branching and forking for
large-scale coordinated development
efforts and the availability of source
code for customizations make Bitbucket
Data Center a no-brainer for bringing
Git into the Enterprise.

Frederic Ros
Head of software development engineering, Amadeus

16

Sources and resources

Friend, Richard. “How we built Bitbucket Data Center to scale.” Atlassian Blog

https://developer.atlassian.com/blog/2016/12/how-we-built-bitbucket-data-center-to-scale/?_

ga=2.81805782.1965541543.1498494935-1052122247.1498494935

“Git Hooks.” Atlassian Website

https://www.atlassian.com/git/tutorials/git-hooks

“Git LFS.” Atlassian Website

https://www.atlassian.com/git/tutorials/git-lfs?_ga=2.57180650.1965541543.1498494935-1052122247.1498494935

Heemskerk, Michael. “How we built Bitbucket Data Center to scale (part 3).” Atlassian Blog,

https://developer.atlassian.com/blog/2016/12/bitbucket-caches/

Paz, John. “Adding cluster nodes to Bitbucket Data Center.” Atlassian Documentation, https://confluence.atlassian.com/

bitbucketserver/adding-cluster-nodes-to-bitbucket-data-center-776640178.html.

Paz, John. “Check for merging pull requests.” Atlassian Documentation

https://confluence.atlassian.com/bitbucketserver/checks-for-merging-pull-requests-776640039.html

Paz, John. “Disaster recovery guide for Bitbucket Data Center.” Atlassian Documentation

https://confluence.atlassian.com/bitbucketserver/disaster-recovery-guide-for-bitbucket-data-center-833940586.html.

Paz, John. “Failover for Bitbucket Data Center.” Atlassian Documentation

https://confluence.atlassian.com/enterprise/failover-for-bitbucket-data-center-687022231.html

Paz, John. “Git Large File Storage.” Atlassian Documentation

https://confluence.atlassian.com/bitbucketserver/git-large-file-storage-794364846.html

Paz, John. “Global permissions.” Atlassian Documentation

https://confluence.atlassian.com/bitbucketserver/global-permissions-776640369.html

Paz, John. “Smart Mirroring.” Atlassian Documentation

https://confluence.atlassian.com/bitbucketserver/smart-mirroring-776640046.html

Paz, John. “Workflow strategies in Bitbucket Server.” Atlassian Documentation

https://confluence.atlassian.com/bitbucketserver/workflow-strategies-in-bitbucket-server-776639944.html

“Server to Data Center: The Tipping Point.” Atlassian Website

https://www.atlassian.com/enterprise/data-center/server-to-data-center-the-tipping-point

Studman, Michael. “How we built Bitbucket Data Center to scale (part 2).” Atlassian Blog

https://developer.atlassian.com/blog/2016/12/bitbucket-adaptive-throttling/

“SVN to Git - prepping for the migration.” Atlassian Website

https://www.atlassian.com/git/tutorials/svn-to-git-prepping-your-team-migration

“What is Git.” Atlassian Website

https://www.atlassian.com/git/tutorials/what-is-git

“Why Git for your organization.” Atlassian Website

https://www.atlassian.com/git/tutorials/why-git

You can find more information on the topics covered in this paper
in our Atlassian Documentation: www.confluence.atlassian.com

