
Scaling up, out, 
and around with 
Bitbucket
A guide to scaling Bitbucket



SCALING UP, OUT, AND AROUND WITH BITBUCKET 2

When it comes to scale, the most demanding 
load many Bitbucket instances encounter is 
often due to managing Git hosting operations 
(simultaneous user-initiated commands, like 
git clone, fetch, and push.)

This is because when you run a Git command that 
has to communicate with a remote repository, 
your Git client opens one or more connections to 
your Bitbucket instance depending on whether 
you are using HTTP  
or SSH. When each of these connection reaches 
the backend server  
(after authentication and other processing) the 
connection executes a Git process and streams its 
standard input, output, and error output back to 
the client.

These Git processes on the server are CPU and 
memory intensive, especially when they generate 
packfiles to transfer repository contents over 
the network. By comparison, most other kinds of 
operations you can perform against a Bitbucket 
instance, like browsing and interacting with 
pull requests, are generally much lighter and 
faster. The resource consumption of a single git 
clone may not seem so bad, but when you have 
hundreds or thousands of users doing these 
operations concurrently, the CPU and memory 
usage add up quickly. 

 
 

Continuous integration systems like Bamboo and 
Jenkins are also famous (or, perhaps, infamous) 
for making a lot of Git hosting operations against 
a Bitbucket instance, to clone and fetch from (and 
sometimes push to) repositories for builds and 
tests. Load from build agents tends to come in 
bursts: builds configured with many parallel or 
cascading stages can generate massive “storms” of 
Git hosting operations all at once. Many continuous 
integration systems can also spin up large numbers 
of elastic build agents in a cloud environment like 
Amazon EC2. This can provide vast amounts of CPU 
resources in a short time to get through the build 
queue, but can overwhelm a Bitbucket instance 
that’s not provisioned with enough resources to 
handle the peaks. So how can you scale Bitbucket 
Data Center to combat all of these challenges?

We’ve outlined a number of scenarios you might 
be experiencing and recommendations on different 
tactics you can use to scale.

IMPORTANT: 
Before jumping into any of the specific use cases, the first thing to 
consider when it comes to scale is your hardware. Take the time to 
examine your infrastructure to identify ways to increase capacity or 
resources by provisioning things like CPU, RAM, disk capacity or IOPS. 

To help you determine the right infrastructure to accommodate  
the size of your environment and meet your organization’s needs,  
we’ve compiled infrastructure recommendations for Bitbucket Data 
Center. Use these recommendations as guidelines when it comes time  
to look for ways to scale up.



SCALING UP, OUT, AND AROUND WITH BITBUCKET 3

Increase in concurrent users
Are you experiencing degraded performance at peak times? Is a new office opening or have 
you seen a recent growth in the number of users due to other organizational changes? The 
number of concurrent users accessing your system can grow for a number of reasons, and this 
growth can quickly negatively impact your instance. In order to swiftly respond to changes in 
concurrent users, you can take advantage of horizontal scaling.

Horizontal scaling

Scale your Bitbucket Data Center cluster horizontally by adding machines to form a cluster 
of many nodes, behind a load balancer. The load balancer included in this setup will route 
incoming traffic to the nodes in a cluster according to the load they are experiencing, allowing 
for more concurrent users.

Degraded performance for distributed teams 
Finding an enterprise organization without distributed teams is near impossible today. As the 
size of your distributed team(s) grows or the number of offices increases, the physical distance 
between these users and the primary instance can have a negative impact on performance. To 
solve for this, Bitbucket has a couple of tools.

Smart Mirroring

Smart mirroring allows you to set up live mirror nodes, which are copies of repositories in remote 
locations. The mirrors automatically keep all repositories hosted on them in sync with the primary 
Bitbucket Data Center instance. Users in those remote locations may clone and fetch repositories 
from the mirror and get identical content, only faster.

Content delivery network (CDN)

Setting up a CDN is another way to help you scale globally. As end users access your site, static 
assets will be cached on the edge server closest to them - allowing content to be delivered from 
the location closest to them, rather than waiting for it to return from the primary location.

 
Multiple instances 
We hear from many customers that they own too many instances. Sometimes they’d like to keep 
these instances separate due to different business units using them or for other use cases. But in 
other use cases, they are interested in consolidating instances to improve manageability. Learn 
how Bitbucket Data Center helps simplify this complex task.

Data Center migration tool

Data Center Migration is a tool for admins that can be used to consolidate multiple Bitbucket 
instances, move from a Bitbucket Server to a Bitbucket Data Center instance, or selectively 
export/import projects and repositories from one Bitbucket Data Center instance to another. With 
this tool, Git data can be imported or exported into Bitbucket Data Center from another Bitbucket 
Server or Data Center deployment, along with pull requests, comments and attachment history.

https://confluence.atlassian.com/bitbucketserver/smart-mirroring-776640046.html


SCALING UP, OUT, AND AROUND WITH BITBUCKET 4

Increase in API usage
CI, apps and scripts for custom use cases request or update data in Bitbucket Data Center. 
As your tool chain and team grows, the number of Git requests from REST API will increase 
and subsequently place significant load on your Bitbucket Data Center instance.

Traffic shaping
To further optimize scale and performance, you can tailor how you segment traffic across 
your application nodes using traffic shaping. Traffic shaping allows you to categorize and 
prioritize particular types of traffic and redirect that traffic to a specific node in your cluster. 
In this case, you could direct external REST API traffic  
to a dedicated node or a set of nodes.

Adaptive throttling
Use adaptive throttling to help your instance adapt to the stress it is under due to Git 
hosting operations. It allows Bitbucket to examine the total physical memory on the 
machine and defines the number of Git operations that can be executed by monitoring 
the system resources. Compared to fixed throttling, this strategy gives you the best 
of both worlds. When your machine has capacity to spare, Bitbucket allows as many 
concurrent Git hosting operations that you can throw at it. But if it starts to strain under 
the load, Bitbucket dynamically detects this and reduces the limit, protecting the overall 
responsiveness of the whole system.

Rate limiting
It isn’t just Git hosting operations that can impact your instance. Automated integrations 
and scripts can also affect or take down your instance. With rate limiting, you can now 
control how many HTTP requests (e.g. REST API requests) automations and scripts can make, 
and how often they can make them - improving performance and team productivity (and 
hopefully for admins, more sleep too).

Webhooks instead of polling for changes
To avoid a suboptimal experience that you might encounter when polling for new code 
changes in Bitbucket on a fixed time period, we recommend using webhooks. You can select 
the event and a webhook will be sent to the specified target system. This means not only 
will the target system be notified quickly but you also won’t place additional load on your 
Bitbucket Data Center instance from polling requests.



SCALING UP, OUT, AND AROUND WITH BITBUCKET 5

Managing or cloning large repositories 
Repositories can easily become quite large, usually due to accumulating a long history or a 
large number of binary assets. And it can be even worse if the repo contains old, deprecated 
binary artifacts. Trying to clone these large repositories can become incredibly challenging. 
There are a few tactics to handle this.

Adding additional storage
As the repository data in your Bitbucket Data Center grows it may become too large to 
hold in a single storage location. When this happens, you’ll need to add additional storage 
space. You can increase the storage space allocated to your shared home directory or add 
additional data stores. Increasing the storage space allocated to your shared home directory 
is simplest option. If this is not an option for you (for example, because of a company policy 
limiting the size of disks or partitions), you should add a data store.

Shallow cloning
You can only pull down the latest n commits of the repo’s history with Git’s shallow 
clone. With improvements to shallow clone in recent years, you can even push and pull to 
repositories from a shallow clone today.

Git filter branch
For the huge repositories that have lots of binary cruft 
committed by mistake, or old assets that aren’t needed anymore, 
a great solution is to use git filter-branch. The command lets 
you walk through the entire history of the project filtering out, 
modifying, and skipping files according to predefined patterns. 
It can be very powerful once you’ve identified where your repo is 
heavy. But there are helper scripts available to help with this.

Git LFS
The best solution of all is Git LFS, which improves how large files 
are handled. Git LFS is an extension that replaces files with tiny 
text pointers that are stored on a remote server instead of in their 
repository. As you can imagine, this dramatically reduces the time 
it takes to clone a repo.

Storage optimizations

 · Hardware and environment configuration: Invest in a high performance file server such 
as a SAN, NAS, or RAID server and use a high-speed LAN such as 10 GB Ethernet or Fibre 
Channel within your cluster. The file server should run on a dedicated machine and you 
should avoid multi-tenanting your Bitbucket Data Center file server with other services 
on the same physical machine.

 · Adjust your SCM cache plugin: Where possible, enable the SCM Cache plugin (already 
bundled in Bitbucket Data Center) with as much disk or SSD space on your cluster nodes 
as you can. An effective SCM Cache can greatly reduce load on your shared file server. 

TIP:
If you’re planning to 
carry out a cleanup 
action using git 
filter-branch, make 
sure to alert your 
team, plan a short 
freeze while the 
operation is carried 
out, and then notify 
everyone that they 
should clone the 
repository again. 



SCALING UP, OUT, AND AROUND WITH BITBUCKET 6

Large number of CI builds, distributed builds or build spikes 
As CI/CD workflows become more sophisticated, frequent (many times a day), and critical, 
a simple change in a file or repository can trigger hundreds of builds, test dependent 
libraries, or services. These large numbers of CI builds can lead to large numbers of clone/
fetch requests to Bitbucket, then which degrades the performance of an instance. Another 
common thing we see is when large, distributed development teams with a large number 
of CI builds experience surges of long running clone and fetch requests. This slows down 
their ability to run builds in a timely manner or even make use of their mirrors due to the 
traffic jam their CI tool has created. Here are some of the strategies to deal with large 
number of builds including build spikes.

Smart mirror farms
Cluster mirrors into “farms” grouped together behind a load balancer to increase your teams’ CI/
CD capacity, reduce the time your distributed teams spend waiting, and scale as the size of your 
distributed teams grow.

Shallow cloning
Pull down the latest n commits of the repo’s history with Git’s shallow clone for faster builds 
rather than an entire history. Things have gotten even faster and easier with improvements  
to shallow clone in recent years. Today, you can even push and pull to repositories from a 
shallow clone.

Adaptive throttling
You can also use adaptive throttling, a tool we mentioned earlier, to combat this. With 
adaptive throttling, Bitbucket examines the total physical memory on the machine 
and determines a maximum ticket number that the machine can safely support given 
an estimate of how much memory a hosting operation consumes, how much memory 
Bitbucket needs, and how much search needs

Have questions?
Learn more at atlassian.com/software/bitbucket/enterprise/data-center

This document is for informational purposes only. ATLASSIAN MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DATASHEET. 
©2019 Atlassian, Inc. All Rights Reserved. SMT-2647-09/19

https://www.atlassian.com/software/bitbucket/enterprise/data-center

